Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

5.2 Binary Convolutional Codes

Office Hours:	
BKD, 6th floor of Sirindhralai building	
Monday	10:00-10:40
Tuesday	12:00-12:40
Thursday	14:20-15:30

Binary Convolutional Codes

- Introduced by Elias in 1955
 - There, it is referred to as convolutional parity-check symbols codes.
 - Peter Elias received
 - Claude E. Shannon Award in 1977
 - IEEE Richard W. Hamming Medal in 2002
 - for "fundamental and pioneering contributions to information theory and its applications
- The encoder **has memory**.
 - In other words, the encoder is a **sequential circuit** or a **finite-state machine**.
 - Easily implemented by shift register(s).
 - The **state** of the encoder is defined as the contents of its memory.

Binary Convolutional Codes

- The encoding is done on a **continuous** running basis rather than by blocks of *k* data digits.
 - So, we use the terms **bit streams** or **sequences** for the input and output of the encoder.
 - In theory, these sequences have infinite duration.
 - In practice, the state of the convolutional code is periodically forced to a known state and therefore code sequences are produced in a block-wise manner.

Binary Convolutional Codes

- In general, a rate- $\frac{k}{n}$ convolutional encoder has
 - *k* shift registers, one per input information bit, and
 - *n* output coded bits that are given by linear combinations (over the binary field, of the contents of the registers and the input information bits.
- *k* and *n* are usually small.
- For simplicity of exposition, and for practical purposes, only rate-¹/_n binary convolutional codes are considered here.
 k = 1.
 - These are the most widely used binary codes.

(Serial-in/Serial-out) Shift Register

- Accept data serially: one bit at a time on a single line.
- Each clock pulse will move an input bit to the next FF. For example, a 1 is shown as it moves across.
- Example: five-bit serial-in serial-out register.

Example 1: *n* = 2, *k* = 1

Graphical Representations

- Three different but related graphical representations have been devised for the study of convolutional encoding:
- 1. the state diagram
- 2. the code tree
- 3. the trellis diagram

Ex. 1: State (Transition) Diagram

• The encoder behavior can be seen from the perspective of a finite state machine with its state (transition) diagram.

A four-state directed graph that uniquely represents the input-output relation of the encoder.

Directly Finding the Output

	1
Output	

01

10

1/01

1/11

1/00

0/01

1/10

11

0/10

0/11

/00

0/01

11 1/10

10 1/01 01

00

10

10

Direct Minimum Distance Decoding

- Suppose **y** = [11 01 11].
- Find <u>**b**</u>.
 - Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

•
$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} d(\mathbf{x}, \mathbf{y})$$

Direct Minimum Distance Decoding

- Suppose $\underline{y} = [11 \ 01 \ 11].$
- Find **<u>b</u>**.

• Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

For 3-bit message, there are $2^3 = 8$ possible codewords. We can list all possible codewords. However, here, let's first try to work on the distance directly.

Direct Minimum Distance Decoding

- Suppose **y** = [11 01 11].
- Find <u>**b**</u>.
 - Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

The number in parentheses on each branch is the branch metric, obtained by counting the differences between the encoded bits and the corresponding bits in \mathbf{y} .

Direct Minimum Distance Decoding

- Suppose **y** = [11 01 11].
- Find <u>**b**</u>.
 - Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

<u>b</u>	$d(\underline{\mathbf{x}},\underline{\mathbf{y}})$
000	2+1+2 = 5
001	2+1+0=3
010	2+1+1 = 4
011	2+1+1 = 4
100	0+2+0=2
101	0+2+2 = 4
110	0+0+1 = 1
111	0+0+1 = 1

Viterbi decoding

- Developed by Andrew J. Viterbi
 - Also co-founded Qualcomm Inc.
- Published in the paper "Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm", IEEE Transactions on Information Theory, Volume IT-13, pages 260-269, in April, 1967.

- Suppose **y** = [11 01 11].
- Find <u>**b**</u>.

104

• Find the message $\hat{\underline{b}}$ which corresponds to the (valid) codeword $\hat{\underline{x}}$ with minimum (Hamming) distance from \underline{y} .

Each **circled number** at a node is the running (cumulative) path metric, obtained by summing branch metrics (distance) up to that node. Here, it is simply the cumulative distance.

- Suppose **y** = [11 01 11].
- Find **<u>b</u>**.
 - Find the message $\hat{\underline{b}}$ which corresponds to the (valid) codeword $\hat{\underline{x}}$ with minimum (Hamming) distance from \underline{y} .

- For the last column of nodes, each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.

Viterbi Decoding: Ex. 1

- Suppose **y** = [11 01 11].
- Find <u>**b**</u>.
 - Find the message $\hat{\underline{b}}$ which corresponds to the (valid) codeword $\hat{\underline{x}}$ with minimum (Hamming) distance from \underline{y} .

- Suppose $y = [11 \ 01 \ 11].$
- Find **<u>b</u>**.
 - Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

- For the last column of nodes, each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.
- We **discard the largerdistance path** because, regardless of what happens subsequently, this path will have a larger Hamming distance from <u>y</u>.

Viterbi Decoding: Ex. 1

- Suppose **y** = [11 01 11].
- Find <u>**b**</u>.
 - Find the message $\hat{\underline{b}}$ which corresponds to the (valid) codeword $\hat{\underline{x}}$ with minimum (Hamming) distance from \underline{y} .

Note that we keep exactly one (optimal) **survivor path** to each state. (Unless there is a tie, then we keep both or choose any.)

- Suppose **y** = [11 01 11].
- Find <u>**b**</u>.
 - Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

References: Conv. Codes

- Lathi and Ding, *Modern Digital and* Analog Communication Systems, 2009
 - [TK5101 L333 2009]
 - Section 15.6 p. 932-941
- Carlson and Crilly, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 2010
 - [TK5102.5 C3 2010]
 - Section 13.3 p. 617-637

