Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

5.2 Binary Convolutional Codes

Office Hours:
BKD, 6th floor of Sirindhralai building
Monday
10:00-10:40
Tuesday
12:00-12:40
Thursday
14:20-15:30

Binary Convolutional Codes

- Introduced by Elias in 1955
- There, it is referred to as convolutional parity-check symbols codes.
- Peter Elias received
- Claude E. Shannon Award in 1977
- IEEE Richard W. Hamming Medal in 2002
- for "fundamental and pioneering contributions to information theory and its applications
- The encoder has memory.
- In other words, the encoder is a sequential circuit or a finitestate machine.
- Easily implemented by shift register(s).
- The state of the encoder is defined as the contents of its memory.

Binary Convolutional Codes

- The encoding is done on a continuous running basis rather than by blocks of k data digits.
- So, we use the terms bit streams or sequences for the input and output of the encoder.
- In theory, these sequences have infinite duration.
- In practice, the state of the convolutional code is periodically forced to a known state and therefore code sequences are produced in a block-wise manner.

Binary Convolutional Codes

- In general, a rate- $\frac{\boldsymbol{k}}{\boldsymbol{n}}$ convolutional encoder has
- k shift registers, one per input information bit, and
- n output coded bits that are given by linear combinations (over the binary field, of the contents of the registers and the input information bits.
- k and n are usually small.
- For simplicity of exposition, and for practical purposes, only rate- $\frac{1}{n}$ binary convolutional codes are considered here.
- $k=1$.
- These are the most widely used binary codes.

(Serial-in/Serial-out) Shift Register

- Accept data serially: one bit at a time on a single line.
- Each clock pulse will move an input bit to the next FF.

For example, a 1 is shown as it moves across.

- Example: five-bit serial-in serial-out register.

Example 1: $n=2, k=1$

Graphical Representations

- Three different but related graphical representations have been devised for the study of convolutional encoding:

1. the state diagram
2. the code tree
3. the trellis diagram

Ex. 1: State (Transition) Diagram

- The encoder behavior can be seen from the perspective of a finite state machine with its state (transition) diagram.

A four-state directed graph that uniquely represents the input-output relation of the encoder.

Drawing State Diagram

Drawing State Diagram
 m punt

output bits

Drawing State Diagram

Drawing State Diagram

				,
b	s_{1}	s_{2}	$x^{(1)}$	(2)
0	0	0	0	0
1	0	0	1	1
0	0	1	1	1
1	0	1	0	0
0	1	0	1	0
1	1	0	0	1
0	1	1	0	1
1	1	1	1	0

Tracing the State Diagram

 to Find the Outputs| Input | 1 | 1 | 0 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output | 11 | 01 | 01 | 00 | 01 | 10 |

Directly Finding the Output

Input	1	1	0	1	1	1
Output						

Parts for Code Tree

1/10

Two branches initiate from each node, the upper one for 0 and the lower one for 1 .

Show the coded output for any possible sequence of data digits.

Input	1	1	0	1
Output	11	01	01	00

Code Trellis

Another useful

Towards the Trellis Diagram

 way of representing the code tree.

Trellis Diagram

Each path that traverses through the trellis represents a valid codeword.

Trellis Diagram

Input	1	1	0	1	1	1
Output	11	01	01	00	01	10

Direct Minimum Distance Decoding

- Suppose $\boldsymbol{y}=\left[\begin{array}{lll}11 & 0 & 1\end{array} 1\right]$.
- Find $\underline{\hat{\mathbf{b}}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.
- $\underline{\hat{\mathbf{x}}}=\arg \min _{\underline{\mathbf{x}}} d(\underline{\mathbf{x}}, \underline{\mathbf{y}})$

Direct Minimum Distance Decoding

- Suppose $\boldsymbol{y}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1\end{array}\right]$.
- Find $\underline{\mathbf{b}}$.

- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.
$\boldsymbol{y}=\left[\begin{array}{lllll} & 11 & 01 & 11\end{array}\right]$.

For 3-bit message, there are $2^{3}=8$ possible codewords. We can list all possible codewords. However, here, let's first try to work on the distance directly.

Direct Minimum Distance Decoding

- Suppose $\boldsymbol{y}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1\end{array}\right]$.
- Find $\underline{\hat{\mathbf{b}}}$.
- Find the message $\underline{\mathbf{b}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

The number in parentheses on each

branch is the branch metric, obtained by counting the differences between the encoded bits and the corresponding bits in \boldsymbol{y}.

Direct Minimum Distance Decoding

- Suppose $\boldsymbol{y}=\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array}\right]$.
- Find $\underline{\mathbf{b}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

\underline{b}	$d(\underline{x}, \underline{y})$
000	$2+1+2=5$
001	$2+1+0=3$
010	$2+1+1=4$
011	$2+1+1=4$
100	$0+2+0=2$
101	$0+2+2=4$
110	$0+0+1=1$
111	$0+0+1=1$

Viterbi decoding

- Developed by Andrew J. Viterbi
- Also co-founded Qualcomm Inc.
- Published in the paper "Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm", IEEE Transactions on Information Theory, Volume IT-13, pages 260-269, in April, 1967.

Andrew J. Viterbi

- 1991: Claude E. Shannon Award
- 1952-1957: MIT BS \& MS

- Studied electronics and communications theory under such renowned scholars as Norbert Wiener, Claude Shannon, Bruno Rossi and Roberto Fano.
- 1962: Earned one of the first doctorates in electrical engineering granted at the University of Southern California (USC) - Ph.D. dissertation: error correcting codes
- Ph.D. dissertation: error corr

Viterbi Decoding: Ex. 1

- Suppose $\boldsymbol{y}=\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array} 1\right.$].
- Find $\underline{\hat{\mathbf{b}}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

Each circled number at a node is the running (cumulative) path metric, obtained by summing branch metrics (distance) up to that node. Here, it is simply the cumulative distance.

Viterbi Decoding: Ex. 1

- Suppose $\boldsymbol{y}=\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array} 1\right.$].
- Find $\underline{\mathbf{b}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

- For the last column of nodes, each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.

Viterbi Decoding: Ex. 1

- Suppose $\boldsymbol{y}=\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array} 1\right.$.
- Find $\underline{\mathbf{b}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

Viterbi Decoding: Ex. 1

- Suppose $\boldsymbol{y}=\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array} 1\right.$.
- Find $\underline{\hat{\mathbf{b}}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

- For the last column of nodes, each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.
- We discard the largerdistance path because, regardless of what happens subsequently, this path will have a larger Hamming distance from y.

Viterbi Decoding: Ex. 1

- Suppose $\boldsymbol{y}=\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array} 1\right.$.
- Find $\underline{\hat{\mathbf{b}}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

Note that we keep exactly one (optimal) survivor path to each state. (Unless there is a tie, then we keep both or choose any.)

Viterbi Decoding: Ex. 1

- Suppose $\boldsymbol{y}=\left[\begin{array}{llll}1 & 1 & 0 & 1\end{array} 1\right.$].
- Find $\underline{\mathbf{b}}$.
- Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from \boldsymbol{y}.

- So, the codewords which are nearest to \boldsymbol{y} is [110101] or [1101 10].
- The corresponding messages are [110] or [111], respectively.

Viterbi Decoding: Ex. 2

- Suppose $\boldsymbol{y}=[\underbrace{110111} 0001$ 10 $]$.
- Find $\underline{\hat{\mathbf{b}}}$.

The first part is the same as before. So, we simply copy the diagram that we had.

Viterbi Decoding: Ex. 2

- Suppose $\boldsymbol{y}=\left[\begin{array}{lllll}11 & 01 & 11 & 00 & 01\end{array}\right.$ 10 $]$.
- Find $\underline{\hat{\mathbf{b}}}$.

113

Viterbi Decoding: Ex. 2

- Suppose $\boldsymbol{y}=\left[\begin{array}{llllll}11 & 01 & 11 & 00 & 01 & 10\end{array}\right]$.
- Find $\underline{\mathbf{b}}$.

Viterbi Decoding: Ex. 2

- Suppose $\boldsymbol{y}=\left[\begin{array}{lllll}11 & 01 & 11 & 00 & 01\end{array}\right.$ 10 $]$.
- Find $\underline{\hat{\mathbf{b}}}$.

115

Viterbi Decoding: Ex. 2

- Suppose $\boldsymbol{y}=\left[\begin{array}{lllll}11 & 01 & 11 & 00 & 01 \\ 10\end{array}\right]$.
- Find $\underline{\hat{\mathbf{b}}}$.

$$
\begin{aligned}
& \underline{\hat{\mathbf{x}}}=\left[\begin{array}{lllllll}
11 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \underline{\hat{\mathbf{b}}}
\end{aligned}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\text { ll }
\end{array}\right.
$$

Viterbi Decoding: Ex. 3

- Suppose $\boldsymbol{y}=\left[\begin{array}{llllll}01 & 10 & 11 & 10 & 00 & 00\end{array}\right]$.
$\begin{array}{llllllllll}\text { Received bits: } & 01 & 10 & 1 & 1 & 10 & 00 & 00 & \text { Optimal path }\end{array}$

$$
\underline{\widehat{\mathbf{x}}}=\left[\begin{array}{lllll}
11 & 10 & 11 & 00 & 00 \\
0
\end{array}\right]
$$

$$
\underline{\hat{\mathbf{b}}}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

References: Conv. Codes

- Lathi and Ding, Modern Digital and Analog Communication Systems, 2009

- [TK5101 L333 2009]
- Section 15.6 p. 932-941
- Carlson and Crilly, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, 2010

- [TK5102.5 C3 2010]
- Section 13.3 p. 617-637

